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A B S T R A C T   

Statistical catch-at-age assessment models used for fisheries management integrate multiple sources of infor
mation that are statistically weighted in a joint likelihood framework; the relative statistical weighting between 
these sources of information is an important, yet often subjective aspect of stock assessment. Input sample size 
(ISS) is a quantity that is used to statistically weight composition data in these types of models. Both design-based 
bootstrap and model-based estimators have been proposed, however, these methods to determine ISS do not 
explicitly account for uncertainty from ageing error and growth variability that are inherent to expanded age 
composition and conditional age-at-length data. In this study, we evaluate the impact of including ageing error 
and growth variability within bootstrap methods that estimate age composition and conditional age-at-length 
ISS. We find that for all the stocks evaluated the ISS determined from bootstrap methods decreased as these 
addition sources of uncertainty were included. The decrease in ISS was species type specific, but generally 
decreased up to 40% when ageing error was introduced, up to 50% when growth variability was included, and up 
to 60% when both sources of uncertainty were included. These results indicate that there is more variability 
within age composition or conditional age-at-length data than would be accounted for with ISS estimates that do 
not include these sources of uncertainty. The method and results provided here allow for assessment scientists to 
statistically weight age composition and conditional age-at-length with ISS that takes into account ageing error 
and growth variability from either fishery-independent or fishery-dependent sources. Including these sources of 
uncertainty improves bootstrap estimates of ISS to capture all the sources of variability in age composition and 
conditional age-at-length and will subsequently improve stock assessment model quality.   

1. Introduction 

Compositional information on age and length are critical data 
products used in statistical catch-at-age assessment (SCAA) models as 
they facilitate the tracking of year classes and size-structure over time to 
facilitate our understanding of a fish stock’s population dynamics 
(Quinn and Deriso, 1999), including the size and age based mortality 
processes through the selectivity of the fisheries. The two primary 
sources for age and length composition data used in SCAA models are 
fishery-independent and fishery-dependent. Fishery-independent sour
ces typically include randomized and standardized collection of samples 
from hauls placed across space in a non-targeted framework. 
Fishery-dependent sources are based upon collection of age and length 

samples, randomized at some level, but obtained from hauls or trips 
targeting a specific species or species group. A common challenge in 
using compositional information in SCAA models to estimate population 
processes is the statistical weighting in the joint likelihood, as the sta
tistical weighting affects the performance of the model. Due to the 
strong influence that compositional data can have in SCAA models, the 
statistical weight assigned to these data products are important for 
providing accurate advice for management (e.g., Hulson et al., 2012, Xu 
et al., 2020). 

Regardless of the source of composition data (whether fishery- 
independent for fishery-dependent), it is commonly accepted that 
overdispersion of the data is inherent due to intra-haul correlation (e.g., 
Pennington and Volstad, 1994, Pennington et al., 2000). The concept of 
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effective sample size (ESS; introduced by McAllister and Ianelli, 1997), a 
reduced sample size from the actual number of fish measured or aged to 
account for this overdispersion, can be implemented within the likeli
hood function to weight the age or length composition data. The sta
tistical weight assigned to annual composition data can follow a myriad 
of methods (e.g., fixed values as in Monnahan et al., 2021, number of 
samples or tows sampled upon as in Hulson et al., 2021 or Spencer and 
Ianelli., 2022, bootstrapping compositions as in Stewart and Hamel., 
2014). The primary consideration when assigning a statistical weight to 
composition data is to account for the potential variability and corre
lation in the sampling process that result in overdispersion. 

Throughout the development and implementation of the ESS concept 
in SCAA models a variety of terms have been used, often having multiple 
meanings for the same term. Typically, ESS is a term that has been used 
to denote the sample size used in statistical weighting of age or length 
composition data (e.g., Hulson et al., 2012, Punt et al., 2021), it has also 
be used to denote the performance of a SCAA estimates of composition 
data compared to the observed data (e.g., Thorson and Haltuch, 2019). 
Input sample size (ISS) has also been used as a term to denote the sample 
size used in statistical weighting of age or length composition data (e.g., 
Thorson and Haltuch, 2019, Thorson et al., 2023). In addition, realized 
sample size is a term introduced when using bootstrap methodologies 
(Stewart and Hamel, 2014). In order to provide consistency in the 
literature we propose the following usage of terms as it relates to this 
issue:  

• Nominal sample size: the actual sample size obtained for age or 
length composition data from fishery-independent or fishery- 
dependent sources. 

• Input sample size: the reduced sample size that accounts for over
dispersion of age or length composition data used to statistically 
weight the composition data in SCAA models.  

• Effective sample size: the statistic used to measure the difference in 
fit between SCAA model estimates of age or length composition data 
and the observed composition data.  

• Realized sample size: the sample size that measures the difference 
between bootstrap estimates of age or length composition and the 
observed composition for a given bootstrap iteration. 

Much of this terminology follows from Thorson et al. (2023) and we 
reiterate and expand upon it here in an attempt to convince researchers 
to adhere to a uniform set of terms across the fisheries literature when 
studying age and length composition data used in SCAA models. 

When age is capable of being determined from otoliths, there is 
further variability in age composition data due to the ageing of the 
otolith, often called ‘ageing error’ (e.g., Punt et al., 2008). There are a 
number of factors that can influence the magnitude of ageing error, for 
example, the number of age classes or the sample size (Nesslage et al., 
2022), but inherent to obtaining ages from otoliths is variability in the 
age readings across the laboratory age readers. To account for this 
source of variability, ageing laboratories regularly evaluate precision 
through obtaining multiple readings of the same otolith across different 
age readers (Morison et al., 2005). Several methods have been devel
oped to account for ageing error in SCAA models when fitting age 
composition by integrating an ageing error matrix as an additional input 
data source for the model (Punt et al., 2008; Candy et al., 2012). The 
ageing error matrix is used to ‘correct’ the numbers-at-age estimated by 
the assessment model by assigning a certain proportion of fish in a given 
age class to adjacent age-classes based on the magnitude of the ageing 
error within the specific age-class. Since the development and imple
mentation of ageing error matrices studies have been devoted to quan
tifying the effects of ageing error on assessment model estimates (e.g., 
Liao et al., 2013). Within each of these studies, and in each application 
of an ageing error matrix within a SCAA model, the age composition 
data will be statistically weighted by an ISS. As described previously, the 
ISS selected to statistically weight the age composition data should 

reflect the variability in the sampling process, thus, it should also 
include the variability in the age readings themselves. 

In the process of obtaining an observed age composition, it may be 
the case that an age-length key (ALK) is employed to expand the esti
mated population numbers-at-length to population numbers-at-age 
(Quinn and Deriso, 1999; Ailloud and Hoenig, 2019). For either 
fishery-dependent or fishery-independent sources of age composition, if 
an expansion process is used to obtain an observed age composition it is 
generally the case that length frequency is expanded to some geographic 
area by weighting haul-level length frequency by haul-level catch-
per-unit-effort (in numbers), this provides an estimated population 
numbers-at-length. Then, an ALK is constructed with age-length paired 
data and multiplied by the estimated population numbers-at-length to 
obtain estimated population numbers-at-age, often referred to as 
expanded age composition data (Siskey et al., 2023). An intrinsic 
component to the ALK is the variability in length for a given age. This 
variability in growth, or the range in lengths that are observed for a 
given age, is directly linked to the variability in the expanded age 
composition, and thus, should be reflected in the ISS selected to statis
tically weight the age composition data within a SCAA model. 

To date, no method has been developed to integrate the variability in 
the ageing process when reading otoliths and in the growth process upon 
which age-length keys are based within the estimation of ISS used to 
statistically weight age composition data in SCAA models. The bootstrap 
method developed by Stewart and Hamel (2014) allows for resampling 
techniques to be employed at each level of the sampling design, and 
provides an objective avenue to estimate ISS that is based on the 
observation variability contained within the sampling process. In this 
study, we extend the methods of Stewart and Hamel (2014) to estimate 
age composition ISS that includes both ageing error and growth vari
ability in the estimation process. We show, in a step-wise process, the 
added variability in age composition sample size from including ageing 
error and growth variability across a number of species that reflect 
differing life histories and levels of ageing difficulty. 

2. Material and methods 

2.1. Data 

We used historical data collected from bottom trawl surveys con
ducted by the Alaska Fisheries Science Center (AFSC) in the Eastern 
Bering Sea (EBS: Lauth et al., 2019), Aleutian Islands (AI: von Szalay 
et al., 2017), and Gulf of Alaska (GOA: von Szalay and Raring, 2018). 
Within the AFSC bottom trawl surveys both length frequency data and 
age specimen data are collected, in addition to other survey data (e.g., 
catch, effort, location). Generally, a subsample of fish from each haul 
were processed at sea to collect their sex, length, and weight. A sub
sample of these fish have their sagittal otoliths collected; these otoliths 
were sent (with haul and specimen data) to the AFSC Age and Growth 
laboratory for age determination. Periodically, a subset of aged otoliths 
are selected for reader-tester agreement tests. These tests are used to 
evaluate the reproducibility of an age reading when two different 
readers age the same fish without knowledge of the other reader’s age 
determination of the otolith (Kimura and Lyons, 1991). The average 
annual bottom trawl survey age sample sizes by region, and the total 
number of otoliths used for reader-tester agreement tests are shown in  
Table 1 for the species evaluated. For the EBS the survey years included 
in this analysis were 1982 – 2022, for the GOA were 1990 – 2021, and 
for the AI were 1991 – 2018. As a point of clarification, we use the term 
‘stock’ to identify a certain species within a distinct region, for example, 
the EBS walleye pollock stock. The stocks selected for this analysis all 
have greater than 5000 reader-tester paired otolith readings (Table 2) 
and are all assessed using integrated SCAA models that require input 
sample sizes for the age composition data. 
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2.2. Length and age composition expansion 

Details of how the length frequency and age collections are expanded 
to population abundance-at-length and -age then subsequently used as 
compositional data in stock assessment models at AFSC are provided in 
Hulson et al. (2023). Here we generalize these methods to provide the 
reader with a broad understanding of how length and age composition 
are expanded in the AFSC bottom trawl surveys. 

Length frequency samples collected by the AFSC bottom trawl sur
veys are expanded by catch and stratum area to obtain estimates of 
population abundance-at-length. This is often referred to as the ‘first 
stage expansion’ and is a common method to obtain population abun
dance estimates at length from area-swept survey data (e.g., Miller and 
Skalski, 2006, Ailloud and Hoenig, 2019). To expand the species-specific 
length frequency samples to population-at-length we first compute the 
overall population numbers within a stratum by multiplying the average 
catch per unit effort within the strata (i.e., the number of fish per square 
kilometer averaged across the hauls performed within the strata) by the 
area of the strata (in square kilometers). The overall population numbers 
in year-y within stratum-s (N̂s,y) is computed with 

N̂ s,y = CPUEs,y⋅As (1)  

where As is the area of stratum-s (in km2), and CPUEs,y is the species- 
specific average catch per unit effort of numbers captured across the 
hauls within a strata in year-y We then compute the relative catch per 
unit effort for each haul performed within the strata and the sex-specific 
relative length composition for each haul. The relative catch per unit 

effort for each haul (ĉh,s,y) is computed by 

ĉh,s,y =
CPUEh,s,y

∑Hs,y

h=1
CPUEh,s,y

(2)  

where CPUEh,s,y is the catch per unit effort of numbers caught within a 
haul-h for stratum-s in year-y. The sex-specific relative length compo
sition for each haul (p̂x,l,h,s,y) is computed with 

p̂x,l,h,s,y =

∑Hs,y

h=1

[
Nx,l,h,s,y

/
Nh,s,y

]

∑3

x=1

∑L

l=1

∑Hs,y

h=1

[
Nx,l,h,s,y

/
Nh,s,y

]
(3)  

where Nx,l,h,s,y is the length frequency sampled, in numbers, by sex-x and 
length-l (in cm) within a haul-h for stratum-s in year-y. Note that when 
expanding length frequencies at AFSC the length bins are set at 1 cm 
(that span the size range for each species), as this is how the length bin 
structure is set in many of the stock assessment models employed at 
AFSC, however, these formulae can be used for other bin sizes (for 
example, 2 cm or larger). Finally, the expanded population abundance- 
at-length is obtained by multiplying the overall population numbers 
within the strata (Eq. (1)), the relative catch per unit effort of each haul 
(Eq. (2)), and the sex-specific relative length composition (Eq. (3)) with 

N̂ x,l,s,y = N̂ s,y⋅
∑Hs,y

h=1

[
p̂C,h,s,y⋅p̂x,l,h,s,y

]
(4) 

Population abundance-at-length are computed for three sex cate
gories (males, females, and unsexed) at the stratum level, which are then 
summed across strata to obtain the population abundance-at-length for 
the management-scale region (i.e., EBS, AI, or GOA). Strata are defined 
as regions with similar bathymetric characteristics (e.g., depth ranges), 
and population abundance-at-length within strata can also be summed 
to any sub-region level. We note that this formulation is equivalent to 
the design-based length composition expansion used in Stewart and 
Hamel (2014). The only difference is found in multiplying the 
sex-specific relative length composition by the relative 
catch-per-unit-effort for each haul in Eq. (4) here, where Stewart and 
Hamel (2014) multiply the sex-specific relative length composition by 
the predicted number of fish in a haul. 

Age-length-keys (ALKs) generated from the age-length paired ob
servations within a survey are then applied to estimated abundance-at- 
length to provide an estimate of abundance-at-age (e.g., Quinn and 
Deriso, 1999), referred to as the ‘second stage expansion’. In the second 
stage expansion, the sex-specific estimates of population 
abundance-at-length (from Eq. (4)) are used to estimate sex-specific 
population abundance-at-age. The annual specimen data collected 
during the survey, which include observations of age-at-length, are first 
populated into sex-specific numbers at age and length (Nx,a,l,y). Next, the 
sex-specific numbers-at-age and length are converted to sex-specific 
proportions of age-at-length (i.e., age-length key) with 

p̂x,a,l,y =
Nx,a,l,y

∑A

a=1
Nx,a,l,y

(5) 

The proportions of age-at-length are then expanded to population 
abundance-at-age with 

N̂ x,a,y =
∑L

l=1
p̂x,a,l,y⋅N̂ x,l,y (6)  

where N̂x,l,y is the population abundance-at-length from Eq. (4) summed 
across strata. 

For both the expanded population numbers-at-length and -age the 

Table 1 
Average annual age samples from the AFSC bottom trawl surveys by region 
(rounded to the nearest 10), and total reader-tester age pairs (rounded to the 
nearest 100) for the stocks evaluated in the bootstrap-simulation.  

Stock (species type) Scientific name AI EBS GOA R-T 

arrowtooth flounder 
(flatfish) 

Atheresthes stomias 450 480 850 6100 

flathead sole (flatfish) Hippoglossoides 
elassodon 

– 560 520 9400 

northern rock sole 
(flatfish) 

Lepidopsetta 
polyxystra 

– 460 450 8900 

northern rockfish 
(rockfish) 

Sebastes polyspinis 570 – 450 6400 

Pacific cod (gadid) Gadus macrocephalus 800 1070 650 21,200 
Pacific ocean perch 

(rockfish) 
Sebastes alutus 940 – 1030 13,500 

walleye pollock 
(gadid) 

Gadus 
chalcogrammus 

790 1500 1300 84,400 

yellowfin sole 
(flatfish) 

Limanda aspera – 750 – 10,300  

Table 2 
Description and notation for bootstrap-simulation evaluations.  

Uncertainty scenarios 

Base Standard bootstrap-simulation (omitting steps 5 and 6 that 
include ageing error and growth variability in the Bootstrap- 
Simulation framework) 

AE Bootstrap-simulation including ageing error only 
GV Bootstrap-simulation including growth variability only 
AE & GV Bootstrap-simulation including both ageing error and growth 

variability 
Treatments 
Growth data 

treatment 
Resample lengths for a given age after pooling age-length data 
across survey years (’Pooled’) or using annual age-length data 
(’Annual’) 

Length bin 
treatment 

Implement 1 cm, 2 cm, and 5 cm length bins in the length data 

Aggregation 
treatment 

Aggregate length and age data before (’Pre-expansion’) or 
after (’Post-expansion’) length and age expansion  
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formulae presented here perform the expansions for sex-specific data. 
Thus, population numbers-at-length and age for male, female, and 
unsexed categories are computed, and the total population numbers-at- 
length and -age are computed by summing across these sex categories. 
While these formulae are presented for specific sex categories, the 
methods developed in this study are also flexible to combining data 
across the sex categories (males, females, and unsexed) prior to the first 
and second stage expansions, thus, estimating a total (or combined sex) 
length and age composition without the need for summation after the 
first and second stage expansions. 

2.3. Simulation-bootstrap framework 

To evaluate the effect of the inclusion of ageing error and growth 
variability on uncertainty in age composition datasets we modified a 
bootstrap-simulation framework (Hulson et al., 2023) to include these 
additional sources of error. In simple terms, the simulation framework is 
a two-stage bootstrap that first resamples hauls, then resamples lengths 
and ages collected within the resampled hauls following from the 
methods in Stewart and Hamel (2014). The simulation framework was 
modified to account for ageing error by resampling from tester ages 
associated with a given reader age. Growth variability was incorporated 
by resampling from lengths associated with a given age and sex. We 
developed these simulations so that growth variability can be incorpo
rated by either pooling the age-length data across all survey years and 
resampling the lengths for a given age, or using the annual age-length 
data and only resampling the lengths for a given age that were 
observed within the specific survey year. 

The order of operations (Fig. 1) has the following schedule: 

1. Resample hauls from the set of hauls with associated catch per unit 
effort (in numbers). 
2. Within the resampled hauls from step 1, resample the observed 
lengths. 
3. With the resampled length frequency data from step 2, calculate 
population abundance-at-length (Eqs. (1) - (4)). 
4. Within the resampled hauls from step 1, resample the observed 
ages from the specimen data. 
5. For the resampled ages in step 4, resample a length from the set of 
lengths observed for the given age. 
6. For the resampled ages in step 4, resample an age from the set of 
tester ages for the given age. 
7. With the resampled age data in steps 4–6 and the population 
abundance-at-length in step 3, calculate the population abundance- 
at-age (Eqs. (5) - (6)). 

We also include functions that compute conditional age-at-length 
(CAAL) in addition to the expansion methods described above. To 
compute CAAL we perform step 1, then steps 4 – 6, and in step 7 we 
compute the ALK (Eq. (5)) without the abundance-at-age expansion. 
Steps 5 and 6 were designed to explore inclusion of growth variability 
and ageing error. The bootstrap-simulation repeats these steps providing 
iterated population abundance-at-age and CAAL for comparison to the 
historical (the full sample without any resampling of data) population 
abundance-at-age and CAAL. 

2.4. Computing input sample size 

A useful statistic that can quantify the variability in age composition 
is realized sample size, introduced by McAllister and Ianelli (1997); 
using the terminology of Stewart and Hamel (2014). This statistic 

Fig. 1. Bootstrap-simulation flow chart, the steps refer to the order of operations.  
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evaluates the amount of uncertainty in an estimated composition 
compared to an observed composition and is given by: 

Ri,y =

∑C

c=1
Oc,y

(
1 − Oc,y

)

∑C

c=1

(
Ec,i,y − Oc,y

)2
(7)  

where Ec,i,y is the estimated proportion for category-c (which can be age 
or any other arbitrary category across which proportions are computed) 
for iteration-i in year-y and Oc,y is the observed proportion. We note, that 
for the realized sample size of CAAL, there would be an additional 
subscript introduced in Eq. (7) for length bin-l (e.g., Oc,l,y), where cate
gory-c would be age, thus providing a realized sample size for each 
length bin within a given year’s CAAL data. Here, the underlying age 
composition and CAAL derived from the historical bottom trawl surveys 
with the full and unsampled data was treated as the observed pro
portions in Eq. (7). For each iteration-i of the bootstrap-simulation we 
computed an estimated proportion (Ec,i,y) that was then compared to the 
observed age composition (Oc,y) to determine the realized sample size 
(Ri,y) of the resampled age composition or CAAL. Thus, across each 
iteration of the bootstrap-simulation we computed a realized sample size 
that indicated the amount of uncertainty in the resampled age compo
sition or CAAL. 

To summarize realized sample size across iterations we used the 
harmonic mean. This has been shown to reduce bias in recovering the 
true sample size in simulations for a multinomial distribution and has 
also been recommended for determining the ISS that is used in stock 
assessment models to fit compositional data (Stewart and Hamel, 2014). 
Thus, for the expanded age composition data we present the annual ISS 
computed from the harmonic mean of the annual iterated realized 
sample sizes. For CAAL the ISS for each length bin within the annual 
CAAL data was computed as the harmonic mean of the bin-specific 
realized sample size across the iterations. Then, to summarize the ef
fect of additional uncertainty, we compute the arithmetic mean of the 
ISS across the length bins (rather than show the ISS for each year and 
length bin). While we present the results of the annual ISS for each stock 
evaluated when incorporating ageing error, growth variability, or both, 
we also compute the proportion of ‘base’ ISS in order to present the 
relative decrease in ISS when incorporating these sources of additional 
uncertainty. The ‘relative ISS’ is computed by dividing the ISS as 
determined after incorporating ageing error, growth variability, or both, 
by the base ISS without these sources of uncertainty. 

2.5. Bootstrap-simulation scenarios and treatments 

We applied the bootstrap-simulation in a step-wise manner to eval
uate the consequences of adding each source of additional error to the 
age composition estimates across what we term ‘uncertainty scenarios’ 
(Table 2). First, we ran the standard bootstrap-simulation omitting steps 
5 and 6 above (‘Base’ scenario). Next, we added ageing error (‘AE’ 
scenario) and growth variability (‘GV’ scenario) separately, thus, omit
ting either step 5 or 6 depending on the source of uncertainty desired. 
Finally, we added both ageing error and growth variability (‘AE & GV’ 
scenario) to the bootstrap-simulation framework. To increase reader- 
tester sample sizes for each species, we pooled reader-tester data 
across the three regions (we note that age readings for all three regions 
are produced in the same age reading laboratory at AFSC). To generalize 
the presentation of results we aggregate across regions and species types, 
thus, annual ISS and relative ISS results are shown for flatfish, gadids, 
and rockfish across the stocks and regions included in this analysis 
(Table 1). In the presentation of CAAL results we selected example stocks 
for each of the species types; GOA arrowtooth flounder (Atheresthes 
stomias) as an example for flatfish, GOA Pacific cod (Gadus macro
cephalus) as an example for gadids, and GOA Pacific ocean perch 
(Sebastes alutus) as an example for rockfish. 

We applied three bootstrap-simulation treatments across the uncer
tainty scenarios in order to evaluate the consistency of the results after 
incorporating each additional error source (Table 2). In the first treat
ment we evaluated the impact of pooling age-length data across all years 
(‘Pooled’) versus using the annual age-length data (‘Annual’) when 
resampling lengths for a given age to incorporate growth variability; we 
term this treatment the ‘Growth data treatment’. In the second treatment 
we evaluate the impact of different length bins for the length frequency 
data by including 2 cm and 5 cm length bins in addition to the base bin 
of 1 cm for comparison; we term this treatment the ‘Length bin treat
ment’. In the third treatment we show an example of aggregating length 
and age data prior to length and age expansion (‘Pre-expansion’) or after 
length and age expansion (‘Post-expansion’); we term this treatment the 
‘Aggregation treatment’. For this treatment we selected two stocks to 
show as an example: GOA Pacific cod and GOA Pacific ocean perch. We 
selected these stocks because they do not exhibit differences in growth 
between females and males, which is the primary consideration for 
aggregating data either before or after length and age expansion. 

The bootstrap-simulations were run for 500 iterations, a level at 
which the variability in population abundance-at-age results had stabi
lized. The bootstrap-simulation was developed in R (R Core Team, 2022) 
and is available via GitHub as an R package (https://github. 
com/BenWilliams-NOAA/surveyISS). 

2.6. Evaluating sampling and life-history relationships to consequences of 
added uncertainty 

For the three species types in this analysis (flatfish, gadids, and 
rockfish) we evaluated relationships between sampling rates and in
dicators of life-history traits across the uncertainty scenarios considered. 
To evaluate the relationship with sampling rates, and the consequence of 
added uncertainty in ISS, we present the relationship between the 
average ISS per age sampled and the number of ages collected which are 
comparable the type of results presented in Stewart and Hamel (2014). 
To evaluate the relationship between ISS and life-history and the con
sequences of additional sources of uncertainty we used two indicators. 
First, we compare relative ISS after incorporating ageing error with the 
age range of the stocks to assess the relationship with longevity. Second, 
we compare relative ISS after incorporating growth variability with the 
length range of the stocks to determine if the impacts of growth vari
ability are related to the size of the species type considered. Finally, we 
rank the relative ISS after incorporating both ageing error and growth 
variability across stocks (and highlighting species types) to illustrate any 
species type impacts on ISS after incorporating these sources of 
variability. 

3. Results 

While the magnitude of age composition ISS was stock and region 
specific, there was a consistent reduction in age composition ISS for each 
species types with the introduction of additional sources of uncertainty 
in the bootstrap procedure (top panels of Fig. 2, shown by region and 
stock in Fig. S1). This reduction in age composition ISS resulted for both 
sex-specific (female and male) and total (combined sex) age composition 
ISS. The magnitude of adding ageing error compared to growth vari
ability was species type specific (top panels Fig. 2) and stock and region 
specific (Fig. S1). For example, adding ageing error to rockfish age data 
resulted in smaller ISS on average than adding growth variability, but a 
larger ISS for flatfish and gadids. For all the species types, age compo
sition ISS was the smallest when both ageing error and growth vari
ability were included in the bootstrap-simulation procedure. 

The relative age composition ISS across uncertainty scenarios 
revealed patterns among species types, where flatfish and gadids had 
similar reductions in age composition ISS, and greater reductions than 
rockfish age composition ISS, when the additional sources of uncertainty 
were included in the bootstrap-simulation procedure (bottom panels of 
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Fig. 2). Including ageing error for rockfish had a larger proportional 
reduction in relative ISS than including growth variability. However, 
when pooling the growth data across years, growth variability had a 
larger proportional reduction for flatfish and gadid relative ISS than 
adding ageing error. Gadids exhibited the greatest variability in the 
proportional reduction in relative ISS and extended to the largest 
reduction in relative ISS, while rockfish had the smallest reduction in 
relative ISS across the uncertainty scenarios, in general. Overall, when 
adding both ageing error and growth variability the median decrease in 
age composition ISS was 72% for flatfish, 56% for gadids, and 88% for 
rockfish when compared to age composition ISS that does not include 
these sources of uncertainty. We also note an interesting result where 
there are a few instances that the relative ISS is greater than 1.0. This 
indicates that when implementing ageing error and growth variability 
there is a random chance that the age composition ISS could increase 
compared to the base ISS. However, this occurred for less than 25% of 
the stock-year age composition ISS. 

Similar reductions in age composition ISS were observed in the 
growth data treatment whether using pooled or annual growth data for 
flatfish or rockfish, however, annual ISS decreased less for gadids (top of  
Fig. 3, shown for individual stocks in Figs. S1 and S2). In general, for all 
the species types, the relative ISS was smaller when using pooled growth 
data compared to annual growth data, indicating an increase in uncer
tainty when using pooled growth data as compared to annual growth 
data. Further, the variability in the relative ISS was reduced when using 
annual growth data as compared to pooled growth data in the growth 
variability uncertainty scenario (GV), for all species types, though this 
was particularly true for flatfish and gadids. 

For the remaining treatments (length bin and aggregation treat
ments) we show results using the annual growth data when imple
menting growth variability (but note that the trend of results was 
consistent regardless of growth data treatment). Slight differences in age 
composition ISS were observed for the length bin treatment and ag
gregation treatment, and the relative ISS results were consistent across 
the species types (Figs. 4 and 5). As length bin size increased the age 
composition ISS increased across each of the uncertainty scenarios (top 
panels of Fig. 4, shown for individual stocks in Figs. S2 – S4). The in
crease in age composition ISS ranged from 4% to 13% for 2 cm bins and 
10 – 23% for 5 cm bins across the species types and uncertainty sce
narios compared to the age composition ISS using 1 cm length bins. In 
the length bin treatment the relative ISS, and variability in relative ISS, 
resulted in similar values for each of the uncertainty scenarios regardless 
of the size of the length bin for each of the species types (bottom panels, 
Fig. 4). An increase in age composition ISS resulted when aggregating 
combined sex data pre-expansion as compared to post-expansion in the 
aggregation treatment for the example stocks presented (top panels of 
Fig. 5). This increase in age composition ISS ranged from 4% to 11% for 
these stocks across the uncertainty scenarios when aggregating com
bined sex data pre-expansion as compared to post-expansion. Similar to 
the length bin treatment, the relative ISS remained largely unchanged 
whether the combined sex data were aggregated pre-expansion or post- 
expansion (bottom panels of Fig. 5). 

Similar to results for expanded age composition, the magnitude of 
conditional age-at-length ISS (presented as the mean across length bins) 
was stock specific and decreased across the uncertainty scenarios as 
ageing error and growth variability was introduced (Fig. 6). The 

Fig. 2. Boxplots of annual age composition input sample size (top row) and relative age composition input sample size (bottom row) aggregated by species type 
across uncertainty scenarios and sex category for 1 cm length bins and pooled growth data. Uncertainty scenarios are described in Table 1. The boxplots shows the 
median (solid line), 25–75% percentile range (box limits, also called the inter-quartile range), and 1.5 times the inter-quartile range (whiskers). 
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magnitude of age composition ISS differed compared to conditional age- 
at-length ISS for the stock examples. For example, arrowtooth flounder 
age composition ISS was generally larger than either walleye pollock or 
Pacific ocean perch age composition ISS, though Pacific ocean perch 
conditional age-at-length ISS was generally larger than arrowtooth 
flounder and walleye pollock conditional age-at-length ISS (top two 
rows of Fig. 6). While the relative age composition and conditional age- 
at-length ISS decreased across the uncertainty scenarios, the magnitude 
of decrease within the uncertainty scenarios was different when 
comparing between age composition and conditional age-at-length 
(bottom two rows of Fig. 6). For example, the decrease in relative con
ditional age-at-length ISS when implementing growth variability was 
larger for arrowtooth flounder and Pacific ocean perch than the decrease 
in relative age composition ISS. Additionally, the decrease in relative 
conditional age-at-length ISS was larger for walleye pollock for each of 
the uncertainty scenarios as compared to relative age composition ISS. 

A decreasing relationship was observed for each species type be
tween the age composition ISS per age sample and the total number of 
age samples collected (top panels of Fig. 7). This decreasing relationship 
resulted for each of the uncertainty scenarios, but was not a significant 
relationship with R2 values less than 0.23 for each linear model fit, 
where the majority were below 0.1 (shown in text in the top panels of 
Fig. 7). The median age composition ISS per age sample ranged from 0.3 
to 0.37 for flatfish, 0.14 – 0.23 for gadids, and 0.25 – 0.29 for rockfish 
across the uncertainty scenarios (bottom panels of Fig. 7). We note that 
the uncertainty in these median values of age composition ISS per age 
sample was large, with coefficients of variation upwards of 28% for 

flatfish, 61% for gadids, and 33% for rockfish. 
An increasing relationship resulted for each species type between the 

age composition ISS per sampled haul and the number of age samples 
per sampled haul (top panels of Fig. 8, we note these panels are analo
gous to Fig. 4 in Stewart and Hamel, 2014). The strongest relationship 
resulted for flatfish (with R2 values of 0.8 – 0.93), was intermediate for 
rockfish (with R2 values of 0.59 – 0.64), and was the weakest for gadids 
(with R2 values of 0.39 – 0.56). The linear relationship also degraded as 
additional uncertainty was incorporated across the uncertainty sce
narios for all the species types. The median age composition ISS per 
sampled haul ranged from 2.5 to 3.1 for flatfish, 0.9 – 1.5 for gadids, and 
1.5 – 1.7 for rockfish across the uncertainty scenarios (bottom panels of 
Fig. 8, we note these panels are analogous to Fig. 3 in Stewart and 
Hamel, 2014). The uncertainty in these median values of age composi
tion ISS per sampled haul was large, with coefficients of variation up
wards of 74% for flatfish, 86% for gadids, and 57% for rockfish. 

Comparing between statistics for longevity (as indicated by age 
range) and growth (as indicated by length range) resulted in generally 
similar trends in the relative age composition ISS by species types when 
adding either ageing error or growth variability (top panels of Fig. 9). 
The relative age composition ISS when adding ageing error had a 
decreasing trend when compared to longevity for each of the species 
types, indicating that the longer lived the stock the larger the effect of 
ageing error had on age composition ISS (top left panel of Fig. 9). A 
similar decreasing trend resulted for each species type when comparing 
relative age composition ISS after adding growth variability with the 
length range of the stocks. This indicates that the larger size range that a 

Fig. 3. Boxplot of annual age composition input sample size (top row) and relative age composition input sample size (bottom row) aggregated by species type across 
uncertainty scenarios within each growth data treatment (shown for total age composition expanded with 1 cm length bins). Uncertainty scenarios are described in 
Table 1. The boxplots shows the median (solid line), 25–75% percentile range (box limits, also called the inter-quartile range), and 1.5 times the inter-quartile 
range (whiskers). 
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stock grows the more of an effect growth variability has on decreasing 
the age composition ISS (top right panel of Fig. 9). On average, the 
relative ISS when adding both ageing error and growth variability was 
largest for rockfish (85% of the base age composition ISS), intermediate 
for flatfish (78% of the base age composition ISS), and smallest for 
gadids (70% of the base age composition ISS, bottom panel of Fig. 9). 
The same trend resulted when evaluating the range in the relative age 
composition ISS when both ageing error and growth variability were 
added, where the range was smallest for rockfish, intermediate for 
flatfish, and largest for gadids. 

4. Discussion 

In this study we find that accounting for ageing error and growth 
variability using bootstrap procedures decreased age composition ISS 
for all stocks examined. This result was consistent across all the treat
ments that we applied, which included pooling growth data (annual data 
or across time), different length bins (1 cm, 2 cm, or 5 cm bins), and 
differences in aggregating data for total age composition (before or after 
length and age expansion). We also show that this result was consistent 
for conditional age-at-length ISS. The impact of the sources of uncer
tainty on resulting ISS was species type specific, with ageing error being 
more influential for rockfish than growth variability, and growth vari
ability more influential than ageing error for flatfish and gadids. How
ever, the influence of growth variability for gadids and flatfish was 
sensitive to the pooling of growth data; age composition ISS was smaller 
when growth variability was applied to pooled data as compared to 

annual data for gadids, and the range in the decrease in age composition 
ISS was smaller for annual data compared to pooled data for flatfish. We 
propose that these results are due to larger inter-annual growth vari
ability observed in gadids and flatfish compared to rockfish. Further, the 
effects of ageing error are not unexpected for rockfish, as they are so 
long-lived. When considering both ageing error and growth uncertainty 
the largest reduction in ISS magnitude was for gadids, followed by 
flatfish, with the least effect observed for rockfish, though results varies 
by stock and region. 

When applying the bootstrap procedure we developed in this study 
to estimate age composition ISS there are several considerations that 
should be made that are specific to the stock that is being analyzed. 
These considerations include: (1) the size of length bins used for length 
data, (2) whether to aggregate length and age data prior to or after 
length and age expansion, and (3) whether to pool growth data across 
time or use annual data. 

In this study we found that age composition ISS can increase as the 
size of the length bin increases. For example, age composition ISS for 
5 cm length bins was larger than when using 1 cm length bins, albeit, the 
increase was not significant. In Hulson et al. (in press) this result was 
also presented for length composition ISS where increasing the size of 
length bins increased the ISS. This result suggests that increasing the size 
of the length bin reduces the amount of uncertainty in the length fre
quency collections. In this case we recommend that length bins larger 
than 1 cm be considered in order to increase the age composition ISS. 

We also show that aggregating combined sex, length and age data 
prior to length and age expansion can increase age composition ISS as 

Fig. 4. Boxplot of annual age composition input sample size (top row) and relative age composition input sample size (bottom row) aggregated by species type across 
uncertainty scenarios within each length bin treatment (shown for total age composition expanded using annual growth data). Uncertainty scenarios are described in 
Table 1. The boxplots shows the median (solid line), 25–75% percentile range (box limits, also called the inter-quartile range), and 1.5 times the inter-quartile 
range (whiskers). 
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compared to summing sex-specific length and age composition after 
expansion. While the increase was small (and not significant), this is an 
important consideration to be made, particularly if the stock that is 
being assessed does not display sex-specific differences in growth. For 
example, the rockfish and gadid stocks presented here do not display 
sex-specific differences in growth, and we recommend that pre- 
expansion aggregation of age and length data be considered. However, 
the flatfish stocks included in this analysis do exhibit sex-specific dif
ferences in growth, and thus, we recommend that sex-specific length and 
age compositions be constructed. 

When implementing growth variability into the bootstrap-simulation 
procedure the resulting magnitude of age composition ISS was sensitive 
to how the growth data was pooled. This was particularly true for the 
gadid stocks evaluated in this study, where, for example, using pooled 
growth data resulted in smaller age composition ISS than when using 
annual growth data. Alternatively, for the rockfish stocks evaluated, 
there was not a large difference in age composition ISS magnitude 
whether using pooled growth data or annual growth data. We recom
mend that for stocks that exhibit inter-annual variability in growth, 
particularly inter-annual variability that may result in a trend in growth 
across time (i.e., increasing or decreasing size over time), that annual 
growth data be used in order to avoid over-estimating the effect of 
growth variability on age composition ISS. For stocks that don’t exhibit 
inter-annual variability in growth, we recommend using pooled growth 
data in order to more adequately incorporate the potential growth 
variability by leveraging the larger sample size in pooled data compared 
to annual data. 

It is well known that misspecification of ISS when fitting 

compositional data can lead to biased results in assessment model pre
dictions (e.g., Stewart and Monnahan, 2017, Xu et al., 2020). Here, we 
show for gadids that the ISS for some stocks and years when adding 
additional uncertainty as compared to the base case could be as small as 
21% of the base case ISS, as small as 41% of the base case for flatfish, and 
as small as 61% of the base case for rockfish. Without these additional 
sources of uncertainty taken into account, using the bootstrap procedure 
would inflate the ISS. While we did not investigate implications to 
specific SCAA model outcomes, we can infer that reductions of ISS of this 
scale will have downstream effects on model predictions and associated 
uncertainty. We note that these sources of uncertainty would not be 
contained only to fishery-independent sources, like evaluated here, but 
would also be inherent to age collections from fishery-dependent sour
ces as well. The functions to bootstrap age composition data to deter
mine ISS for fishery-dependent sources are currently under 
development. Future investigations into the impacts of adding ageing 
error and growth variability into ISS estimation on SCAA model results 
should also include fishery-dependent ISS implications. These in
vestigations should also include data weighting methods that allow for 
adjustment to weighting between the data sources integrated, for 
example using the methods presented in Francis (2011) and Thorson 
et al. (2017). We note that while these methods can adjust the relative 
influence of composition data on SCAA model results, the initial ISS 
matters. In theory these re-weighting methods can overcome mis
specification of ISS, however, in practice SCAA model results can be 
sensitive to the starting values of ISS. This implication points to the 
importance of using length and age composition ISS that adequately 
include the sources of uncertainty common to age and length 

Fig. 5. Boxplot of annual age composition input sample size (top row) and relative age composition input sample size (bottom row) for the selected example species 
type stocks across uncertainty scenarios within each aggregation treatment (shown for total age composition expanded using annual growth data and 1 cm length 
bins). Uncertainty scenarios are described in Table 1. The boxplots shows the median (solid line), 25–75% percentile range (box limits, also called the inter-quartile 
range), and 1.5 times the inter-quartile range (whiskers). 
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composition data. 
A number of operational assessment models use a proxy in some form 

based on the number of sampled hauls or the nominal sample size when 
setting ISS for age and length composition data (e.g., Hulson et al., 2021, 
Barbeaux et al., 2022). Considering the proxy using hauls, (derived from 
Pennington et al., 2000 who investigated length frequency sampling and 
determined, on average, the ISS was one fish per haul) we note that the 
conclusion made in Pennington et al. (2000) was not that the number of 
hauls should be used as a proxy for ISS in the assessment model data 
fitting procedure, but, rather, that in order to potentially increase the ISS 
that samples should be taken from an increased number of hauls. 
Alternatively, considering the proxy using nominal sample size, the re
sults of Stewart and Hamel (2014) have been used to scale nominal 

sample size to length composition ISS based on the average ISS per 
sample reported in that study. Here we find that the relationship be
tween age composition ISS and either nominal sample size or sampled 
hauls to be highly variable and statistically insignificant. We recom
mend that length and age composition ISS be determined from a boot
strap procedure rather than scaling hauls or nominal sample size based 
on the relationship with bootstrap ISS results. We note that the bootstrap 
procedure presented here is not computationally burdensome and can 
be applied to specific stocks in a matter of minutes. 

Previous work has investigated both the inclusion of ageing error 
(Punt et al., 2008; Liao et al., 2013) and growth (Taylor and Methot, 
2013) within stock assessment models, however, none have applied 
these additional sources of uncertainty in the context of estimating ISS. 

Fig. 6. Boxplot of annual age composition and conditional age-at-length input sample size (top two rows) and relative age composition and conditional age-at-length 
input sample size (bottom two rows) for the example species type stocks across uncertainty scenarios by sex category (using annual growth data and 1 cm length 
bins). Uncertainty scenarios are described in Table 1. The boxplots shows the median (solid line), 25–75% percentile range (box limits, also called the inter-quartile 
range), and 1.5 times the inter-quartile range (whiskers). 
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As it pertains to ageing error, in many current assessments an ageing 
error matrix is implemented either to be applied to marginal age 
composition data (e.g., Williams et al., 2022) or applied to CAAL data (e. 
g., Hulson et al., 2022) in order to account for ageing error that is 
inherent to the age composition and CAAL data. Use of an ageing error 
matrix effectively ‘smudges’ assessment model estimates of 
population-at-age into adjacent age classes prior to fitting the observed 
proportions in the age composition input data from either 
fishery-independent or fishery-dependent sources. Then, in the model 
fitting step, an ISS is used to fit the model’s ‘smudged’ estimates of age 
composition to the observed age composition. Here, we suggest that 
unless ageing error is accounted for in the age composition or CAAL ISS 
used to fit these data then we are likely ‘over-fitting’ the model estimates 

to the ‘observed’ age composition and that the use of only an ageing 
error matrix only partially accounts for this source of uncertainty in the 
assessment modeling process. The results from this study suggest that in 
some cases the addition of ageing error to the bootstrap method de
creases the age composition ISS to such an extent that an ISS that does 
not take into account this source of uncertainty can be 125–165% too 
large. 

It is commonly the case that age composition is produced through a 
two-stage expansion process (Quinn and Deriso, 1999), in which length 
frequency data is expanded to population-at-length in the first stage, and 
an ALK is used to expand population-at-length to population-at-age in 
the second stage (Ailloud and Hoenig, 2019). In the second-stage of this 
expansion process, the ALK is produced through the use of age-length 

Fig. 7. Age composition input sample size per age sample compared to the number of ages sampled (top panels, points represent species-year combinations) and 
across uncertainty scenarios (bottom panels) aggregated by species types. Uncertainty scenarios are described in Table 1. Linear relationships are shown in the top 
panels, along with the R2 values, for each uncertainty scenario (color). The boxplots in the bottom panels shows the median (solid line), 25–75% percentile range 
(box limits, also called the inter-quartile range), and 1.5 times the inter-quartile range (whiskers). 
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paired data that are obtained in the age sampling collection, and within 
the ALK the variability in length-at-age is implicitly accounted for. In 
other cases CAAL data is used in conjunction with expanded length 
composition data so that growth can be estimated internally in an SCAA 
model (e.g., Hulson et al., 2022). The CAAL data is computed in a similar 
method as expanded age composition, in that the ALK that is produced is 
used directly in the model, rather than expanding by length composition 
to produce marginal age composition externally to the SCAA model. 
However, there have been no previous attempts to include this source of 
variability when considering the ISS that is used to fit the expanded age 
composition or CAAL data. We find that the magnitude of effect on age 
composition and CAAL ISS is species type dependent, and can have 
different implications when either using age composition or CAAL data. 

When implementing growth variability there was a 10–50% decrease in 
the magnitude of bootstrapped age composition and CAAL ISS, thus, if 
not taking this source of uncertainty into account the ISS for either 
source of information can be up to 200% too large. We also note that in 
some cases age composition data is not expanded by an ALK, but rather, 
the age specimens are used directly to compute the age composition (for 
example, in cases when age specimen data are collected randomly rather 
than stratified). We suggest that future analyses be conducted to quan
tify the relative benefit in ISS of using an ALK versus expanding 
randomly collected ages directly without benefitting from the expanded 
sample size of lengths. 

An additional consideration is understanding effects of survey 
reduction effort, the focus of a number of recent studies (ICES, 2020, 

Fig. 8. Age composition input sample size per sampled haul compared to the number of age samples per sampled haul (top panels, points represent species-year 
combinations) and across uncertainty scenarios (bottom panels) aggregated by species types. Uncertainty scenarios are described in Table 1. Linear relationships 
are shown in the top panels, along with the R2 values, for each uncertainty scenario (color; and a dashed 1–1 line is shown for reference). The boxplots in the bottom 
panels show the median (solid line), 25–75% percentile range (box limits, also called the inter-quartile range), and 1.5 times the inter-quartile range (whiskers). 
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2023), as survey reductions may be inevitable in many regions due to 
declining budgets. A recent study investigated the reductions in length 
frequency and age collection effort, using AFSC bottom trawl survey 
(Hulson et al. in press) found that reduction in age collections had a 
larger effect on age composition uncertainty for flatfish and rockfish as 
compared to gadids. Here we find that including additional sources of 
uncertainty has a greater effect on gadids, and less impact on rockfish. It 
is potentially the case that the effect of decreases in sampling effort for 
gadids and flatfish would be smaller given the magnitude of effect by 
these sources of uncertainty as compared to rockfish. However, we 
acknowledge that this should be evaluated in future studies to under
stand the specific effects on stocks and when comparing among species 
types when including these additional sources of uncertainty in esti
mating age composition ISS. 

5. Conclusions 

Overall, we find that expanding upon the method introduced by 
Stewart and Hamel (2014) by including ageing error and growth vari
ability into estimation of age composition ISS can have a large effect in 
reducing the magnitude of ISS. We provide two primary 

recommendations from this work. First, we recommend that stock 
assessment scientists consider the use of bootstrap methods to set age 
composition ISS, length composition ISS, and CAAL ISS. With modern 
computing power, for a single species using the R package we built 
(https://github.com/BenWilliams-NOAA/surveyISS), it takes less than 
an hour to obtain both age and length composition bootstrap ISS for a 
historical survey time series (longer than 40 years in some cases); for a 
single year it takes a matter of minutes. Second, for all estimates of age 
composition ISS and CAAL ISS we recommend implementing ageing 
error and growth variability to more explicitly and thoroughly take 
these sources of uncertainty into account in stock assessment models. 
We note that while we used fishery-independent data here as an 
example, these sources of uncertainty are also inherent to 
fishery-dependent data. 
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Fig. 9. Relative age composition input sample size when including ageing error (‘AE’) or growth variability (‘GV’) compared to longevity (as indicated by age range) 
and growth (as indicated by length range, top panels, points represent species-year combinations) and when including both ageing error and growth variability (‘AE 
& GV’, bottom panel, with the whiskers indicating the 95% confidence intervals) across the species types (colors) evaluated. For illustration of trends, linear re
lationships for each species type are shown in the top panels. 
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